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SIMULATION OF NONISOTHERMAL MOISTURE
TRANSFER AND STRESSES IN WOOD IN DRYING

P. V. Akulich and K.-E. Militzer UDC 66.047

We obtain a numerical solution for a two-dimensional problem of nonisothermal moisture transfer in the
anisotropic structure of wood (lumber) in convective drying. On the basis of elasticity theory we determine
internal thermal and moisture stresses.

Introduction. The drying of wood is one of the most important production processes in the technology of
wood processing. The complexity of the drying of lumber is attributable to the variety of physicomechanical
properties of different species, anisotropy of wood structure, interrelation between the phenomena of heat and
moisture transfer, strains and stresses occurring in drying, and large differences in the dimensions of assortments.
The quality of articles made of wood, capacity of drying equipment, and energy consumption depend largely on
the conditions of lumber drying. Rational conditions for drying lumber can be established from an analysis of the
internal processes of heat and moisture transfer and the stress-strain state, which is determined by the dynamics
of the moisture and temperature fields.

Heating and drying of lumber leads to the development of multidimensional heat and moisture transfer in
the anisotropic structure of wood. Usually, the length of the lumber considerably exceeds the other dimensions,
i.e., the width (L) and thickness (L), and therefore, more often than not, it is worthwhile to confine considerations
to a two-dimensional model.

Several methods are available for taking into account the multidimensional nature and anisotropy of wood
in practicai calculations of the process of heating and drying of materials: based on the analytical solution to a
multidimensional problem of moisture diffusion; construction of special dimensionless diagrams; introduction of
corrections for the multidimensional nature (an equivalent dimension of the body or a diameter quotient). A review
of these investigations is set out rather comprehensively in {1, 2].

Below we solve a two-dimensional problem of nonisothermal moisture transfer in the anisotropic structure
of wood and determine internal stresses in wood in drying and limiting strengths.

Mathematical Model. We will consider the cross section of a specimen, with the coordinate origin fixed at
its center. Then the point with the coordinates (ly, [3), where [} = L/2, I, = L,/2, will correspond to the specimen
edge (Fig. 1).

In drying of the capillary-porous structure of wood the convective component is small compared to the
conductive component [3]. As is known, the system of differential equations of nonisothermal moisture transfer in
the case of a small total-pressure gradient has the following form for the two-dimensional problem:
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Fig. 1. Diagram of the specimen: 1-7) test points of the specimen.
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We denote: R. = ¢/co; R, = p/po; Riy = A1 /A0, Riz = A2/, Ry = Ayg/Ayg, Rp = 11/, R'al = a;/ajg, R(rlz =

dy/ ayy, Rs =08/8g, Ry=ayy/ajg, T = (1 — tg)/tg, U= (ug — w)/uq.
Then the system of equations (1)-(10) will be written in dimensionless form as
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The dimensionless boundary conditions are

Ry o .+ Ko LuKin, (Fo) (1 = ) = Kiy (Fo).
Rip 3 |+ Ko LuKiny (Fo) (1 = ) = Kig (Fo)
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In solving the system of equations (1)-(10), we took into account the dependence of the thermophysical
characteristics on temperature and moisture content. We used the approximating dependences suggested in {1}

We will give some of them.
The thermal conductivity coefficient is

A= AOkX}. kpl s

0.295log100u~—1.022

Ao = 0.00222u (¢ — 273) + 10 , 005<u<l,

at pg = 500;

B I
ko1 = 1864 — 0.00175p; "

where k3 and ky are the corrections for the wood density and the heat-flux direction, respectively.

The moisture conductivity coefficient is

a = agky, kpa ’

P30log=326 -y = 1.9 = 0.00205p, when p < 500; &

a0=10 %

p

/ay,. = 1.285.

[t was assumed that a an =

rad

400

<= 098 when p, > 500.

(20)

21



The internal stresses in the wood werce calculated on the basis of clasticity theory. We consider an
orthogonally anisotropic (shortened to "orthotropic”) plate of wood that has different elastic, moisture, and
temperature properties in two mutually perpendicular directions. The planes of orthotropy coincide with the planes
of the adopted coordinate system (x, ). [n a plane stressed state the equation of moisture elasticity can be written
in the form (4]
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where A| = Ey(1/2G —v/E)); Ay = Ey/Ex; A3 = Eyyy; n=vx/¥y: Vx0 Vy and Ey, Ey are the drying-up coefficients
and elasticity moduli in the direction of the x and y axes, respectively; U = u‘A— u is the drop in hygroscopic
moisture content over the specimen cross section; for « > u” it was assumed that U = 0, which corresponds to the
absence of drying-up in the moist zone. It is known that the drying-up of wood begins when the moisture content
decreases beyond the saturation limit of the cellular walls (the maximum hygroscopic moisture content), which is
equal, on the average, t0 ug m = 30%. Owing to the fact that noticeable changes in the strength, stiffness, and
drying-up of wood begin at a moisture content of 259%,, this moisture content was taken as the calculated limit u"=
0.25 [51].
The boundary conditions are
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Similarly to [6] we will seek the solution to Eq. (22) in the form
F (% 3.7) = 43Z (x,) S (). 23)

Substituting Eq. (25) into Eq. (22), we obtain
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where U(x, y) = U(x, y, )/S@).
The boundary conditions are
2 2
7z 0 Z
— =0 at y==x1/, d—7=0 at y==/,
8x dy
(27)
2
VA
axay=0 at x==x/4,, y==x14,.
We represent the function Z(x, y) in the form of the polynomial
2 22 2 223 W i k
Zx, )= =0) O — 1) 2 2 ag Xy (28)

(=0 k=0

It is not difficult to see that the function Z(x, y) satisfics boundary conditions (27).
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In order to dctermine the constants ay, we use the Galerkin method. Substituting Eq. (28) into Eq. (26)
and limiting ourselves to three terms of the series, we obtain
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Thus, using heat and mass transfer equations (1)-(10) we calculated the moisture-content and temperature
fields for each instant of time, and then we determined the curves for the stresses o), o), T, from formulas
(34)-(36).

The effect of degeneration of elastic deformations into residual ones was considered on the basis of the
well-known fact that the elasticity modulus in unloading is 1.5 times larger than the same quantity in loading [5].
In a first approximation, for residual deformations we can write eeg = 0™ */E — d™*/(1.5E) = 0™**/3E. In view
of this, the stresses on the unloading linc were calculated approximately from the formulas

max

o,=0,—-0, /3,

(37
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Fig. 2. Dependences of the mean moisture content (curve 1) and temperature
{curve 2) of the specimen on time. 7, h.
Fig. 3. Dependences of the moisture content and temperature on time for
different points of the specimen (see Fig. ).
' max
g,=0, =0, /3, (38)

where oy and o, are the stresses calculated from formulas (34) and (35); o™ and 0;,"3" are the maximum local
stresses.

Discussion of Results. A numerical solution for the system of equations of heat and moisture transfer
(1)-(10) was found by means of an iteration method. Here, two-dimensional equations (1) and (2) were solved by
a locally one-dimensional method {7 ]. The accuracy of the numerical scheme was checked by increasing the number
of grid points and time steps. [t was noted that a decrease of a step in space and time, compared to those selected,
results in a very slight improvement in the quality of the lines and does not lead to substantial quantitative changes.
It should be noted that in order to reduce the time of the computations, we carried out calculations of heat and
moisture transfer phenomena for both the two-dimensional problem given above and the analogous one-dimensional
case.

The heat-conduction equation involves the criterion of phase transition ¢, which determines the portion of
the moisture evaporated inside the body. This parameter takes values from O to 1 and depends on the conditions
of the process. To estimate the contribution of this parameter, calculations were carried out for different values of
e e =0, 0.15, 0.5, 1.0 using pine wood as an example under the normal drying conditions 3—H (three-stage
conditions). It was noted that changes in the criterion € exert a very slight effect on the values of the temperature
and moisture-content parameters. The greatest deviations of the moisture content were observed at the third stage
of drying (u < 25%,) at the center of the specimen. In subsequent calculations we took the value ¢ = 0.15 from the
results of investigations [8 ], which was obtained at a temperature of the medium of 60 ... 115°C and a velocity of
1.6 m/sec.

The investigations showed that the heat and moisture conduction exerted an insignificant influence on the
duration of drying. At the beginning of the process the heat and moisture conduction somewhat increases the rate
of drying, while at the third stage of drying it decreases the intensity of the process, i.e., leads to an increase in
the duration of drying under the above-indicated conditions by about 5%. The data obtained agree with results of
investigations given in [9]. Thus, the effect of heat and moisture conduction can be neglected in engineering
calculations.

Figures 2-5 present results of numerical investigations of heat and moisture transfer and internal stresses
in a specimen of pine wood measuring 0.125 x 0.027 m under the normal drying conditions 3—H (see Table 1)
[101.

Grids of sizes 59 x 15 and 89 x 19 were used in the numerical implementation.

The wood was heated at the temperature of the medium fp.q = 94°C and the relative moisture content ¢ =
0.97 until the difference between the temperature of the medium and that at the center of the board specimen
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Fig. 4. Dependences of the stresses o, (curve 1), strength limit (curve 2),
moisture content (curve 3), and temperature (curve 4) on time: a) at point 1,
b) at point 6 (curve 2 is not depicted), c) at point 2.

Fig. 5. Spatial change in the normal stresses o, (a) and the tangential stresses
Ty (b) at 7 =16.09 h.

reached 3°C; then the first stage of drying began. The calculations were carried out for the following parameters:
to =291 K; ug =0.39; r =2500 kJ/kg; e = 0.15; A, =0.28; A, =0.17; pg = 460 kg/ma; pp =430 kg/m3; V=12 m/sec;
kg =15 ky = 1.045; kg = 1; kyg = 0.8, 0 = 0; Imed = Imed 1 = Imed 25 Ueq = Ueq | = Ueq 2- The specimen was sawed
in quarters. The values of the elasticity modulus and strength limit of the wood were determined from formulas
obtained in [1):

E (u, t) = 15tu — 1600u — 5.25¢ + 575,

oy (u, £) = 0.067w — 17u — 0.035¢ + 7.1,
and the equilibrium moisture content was determined from the formula [1}]
Uoq = 10.6” [3.27 — 0.015 (1,04 — 273)1/100..

The dependences of the mean values of the moisture content and temperature on time and the values at
the chosen points of the wood specimen are given in Figs. 2 and 3. From Fig. 3 it is seen that the temperature drop
over the specimen cross section is small and the drying process after the heating-up period can be approximately
considered as isothermal. ‘

The internal stresses were calculated from formulas (34)-(38). At the beginning of the drying process the
tensile stresses in the surface zone increase and then they decrease (Figs. 4 and Sa). It should be noted that the
decline in the stresses was observed as soon as the moisture content of the inner zone became lower than the
saturation limit of the cellular walls (in this case, the caiculated limit of 25%). This fact is in agreement with results
of [§1]. The appearance of considerable residual deformations at the end of the drying process leads to a change
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TABLE 1. Parameters of the Normal Conditions of Drying 3—H and Coefficients of Heat and Moisture Exchange

u tmed, °C p a, W/ (m*-K) :B, m/sec

> 0.35 79 0.77 23 2-107°
0.35-0.25 84 0.62 22.5 3-107°
< 0.25 105 0.27 22 45-107°

Note: Ist line, first stage of drying; 2nd line, second stage of drying; 3rd line, third stage of drying.
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Fig. 6. Comparison between calculated (1, 2) and experimental (3, 4) curves
of the drying of lumber: 1, 3) ug = 0.32 kg/kg, pp, = 400 kg/m?, specimen of
dimensions 0.083 x 0.008; 2, 4) ug = 0.39, pp, = 430, 0.027 x 0.125. u, %;
7, h.

in the sign of the stresses. In the dried board residual compressive stresses are retained in the surface layers, and
tensile stresses in the inner zone.

According to the given model, in the period of increase of the stresses one could observe a certain relaxation
of them. However, it should be noted that when the initial moisture content of the specimen was lower than the
calculated hmit of 259, relaxation of stresses was not observed.

The maximum stresses at point 2 are higher than at the center of the surface zone (point 1), and the
stresses oy at point 1 are considerably higher than the stresses o, at point 3.

The spatial change in tangential stresses is presented in Fig. 5b.

In addition, we carried out calculations for a thicker specimen of dimensions 0.125 x 0.05. As the thickness
of the board increases, the stresses oy, on the line 3-5, as well as the tangential stresses, increase.

The mathematical model was checked by comparing calculated and experimental data for pine-wood
specimens of dimensions 0.083 x 0.068 and 0.027 x 0.125 for the following drying conditions: fpeq = 80°C, ¢ =
0.5, V=2 m/sec. The computations were performed on a 37 x 31 grid. Figure 6 presents a comparison of calculated
data with results of experiments carried out in [1 ]. An analysis of the figure indicates good agreement between the
calculated and experimental data on the kinetics of the drying process for two specimens differing in the initial
moisture content.

NOTATION

ay, az and ayq, azg, values of the thermal diffusivity coefficicnts for moist and dry wood in the direction
of the x and y axes, respectively, m®/sec; ay. ay and ayg, ayg, values of the moisture conductivity coefficients for

moist wood and at the initial values of temperature fy and moisture content ug, respectively, mz/sec; tads Qians
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maisture conductivity coefficient in the radial and tangential direction of annual layers, respectively, mz/sec; C, €Oy
heat capacity of moist and dry wood, J/(kg-K); E,, Ey, elasticity moduli, MPa; G, shear modulus; j; =
ay(Tgeqr — T!x =1)1g, heat flux density on the surface, W/m?%; Jmi = —poBi1Ulx = = Uegq) 40» moisture flux density
on the surface, kg/(m2~sec); r, specific heat of vaporization, J/kg; t, fy, current and initial values of the wood
temperature, K; fe4, temperature of the medium, K; u, ug, current and initial values of the wood moisture content,
kg/kg; Ueq, equilibrium moisture content, kg/kg; V, velocity of the medium, m/sec; o, relative moisture content of
the medium; x, y, spatial coordinates, m; X, Y, dimensionless coordinates; a,, a3, coefficients of heat transfer on
the outer surfaces, W/(mZ-K); Bi, B, coefficients of moisture transfer, m/sec; &, dg, coefficient of heat and
moisture conductivity of the moist wood and at the initial values 1o and up, respectively, K'l; e, phase change
criterion; 4y, 42 and Ayg, 479, thermal conductivity coefficients of moist and dry wood, W/(m-K); v, Poisson
coefficient, v = 0.5; p, py, po, density of moist wood, base density and density of dry wood, respectively, kg/ m3;
Ox, dy, normal stresses, MPa; 7, time, sec; 1y, tangential stresses, MPa; Fo = amr/Lf, Fourier number; Ko =
rug/ coly, Kossovich number; Kiy = jyL1/4 00, Kirpichev heat transfer number; Kip| = ju1 L/ a)youo, Kirpichev
mass transfer number; Lu = a,y/a,q, Luikov number; Pn = d¢gty/ 1, Posnov number. Subscripts: 1 and 2, values
of the parameters in the direction of the x and y axes, respectively.
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